Joining data

Code for Quiz 6, more dplyr and our first interactive chart using echarts4r

Steps 1-6

  1. Load the R packages we will use
  1. Read the data in the file, drug_cos.csv, health_cos.csv in to R and assign to the variables drug_cos and health_cos, respectively
drug_cos <- read_csv("https://estanny.com/static/week6/drug_cos.csv")
health_cos <- read_csv("https://estanny.com/static/week6/health_cos.csv")
  1. Use glimpse to get a glimpse of the data
drug_cos %>% glimpse()
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "Z...
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Z...
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "N...
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0....
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0....
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0....
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0....
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0....
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 20...
health_cos %>% glimpse()
Rows: 464
Columns: 11
$ ticker      <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZT...
$ name        <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zo...
$ revenue     <dbl> 4233000000, 4336000000, 4561000000, 478500000...
$ gp          <dbl> 2581000000, 2773000000, 2892000000, 306800000...
$ rnd         <dbl> 427000000, 409000000, 399000000, 396000000, 3...
$ netincome   <dbl> 245000000, 436000000, 504000000, 583000000, 3...
$ assets      <dbl> 5711000000, 6262000000, 6558000000, 658800000...
$ liabilities <dbl> 1975000000, 2221000000, 5596000000, 525100000...
$ marketcap   <dbl> NA, NA, 16345223371, 21572007994, 23860348635...
$ year        <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 201...
$ industry    <chr> "Drug Manufacturers - Specialty & Generic", "...
  1. Which variables are the same in both data sets
names_drug <- drug_cos %>% names()
names_health <- health_cos %>% names()
intersect(names_drug, names_health)
[1] "ticker" "name"   "year"  
  1. Select subset of variables to work with
drug_subset <- drug_cos %>%
  select(ticker, year, grossmargin) %>%
  filter(year == 2018)
health_subset <- health_cos %>%
  select(ticker, year, revenue, gp, industry)%>%
  filter(year == 2018)
  1. Keep all the rows and columns drug_select join with columns in health_subset
drug_subset %>% left_join(health_subset)
# A tibble: 13 x 6
   ticker  year grossmargin   revenue        gp industry              
   <chr>  <dbl>       <dbl>     <dbl>     <dbl> <chr>                 
 1 ZTS     2018       0.672   5.82e 9   3.91e 9 Drug Manufacturers - ~
 2 PRGO    2018       0.387   4.73e 9   1.83e 9 Drug Manufacturers - ~
 3 PFE     2018       0.79    5.36e10   4.24e10 Drug Manufacturers - ~
 4 MYL     2018       0.35    1.14e10   4.00e 9 Drug Manufacturers - ~
 5 MRK     2018       0.681   4.23e10   2.88e10 Drug Manufacturers - ~
 6 LLY     2018       0.738   2.46e10   1.81e10 Drug Manufacturers - ~
 7 JNJ     2018       0.668   8.16e10   5.45e10 Drug Manufacturers - ~
 8 GILD    2018       0.781   2.21e10   1.73e10 Drug Manufacturers - ~
 9 BMY     2018       0.71    2.26e10   1.60e10 Drug Manufacturers - ~
10 BIIB    2018       0.865   1.35e10   1.16e10 Drug Manufacturers - ~
11 AMGN    2018       0.827   2.37e10   1.96e10 Drug Manufacturers - ~
12 AGN     2018       0.861   1.58e10   1.36e10 Drug Manufacturers - ~
13 ABBV    2018       0.764   3.28e10   2.50e10 Drug Manufacturers - ~

Questions: join_ticker

drug_cos_subset <- drug_cos %>%
  filter(ticker == "MRK")

drug_cos_subset
# A tibble: 8 x 9
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MRK    Merc~ New Jer~        0.305       0.649     0.131 0.15  0.114
2 MRK    Merc~ New Jer~        0.33        0.652     0.13  0.182 0.113
3 MRK    Merc~ New Jer~        0.282       0.615     0.1   0.123 0.089
4 MRK    Merc~ New Jer~        0.567       0.603     0.282 0.409 0.248
5 MRK    Merc~ New Jer~        0.298       0.622     0.112 0.136 0.096
6 MRK    Merc~ New Jer~        0.254       0.648     0.098 0.117 0.092
7 MRK    Merc~ New Jer~        0.278       0.678     0.06  0.162 0.063
8 MRK    Merc~ New Jer~        0.313       0.681     0.147 0.206 0.199
# ... with 1 more variable: year <dbl>
combo_df <- drug_cos_subset %>%
  left_join(health_cos)

combo_df
# A tibble: 8 x 17
  ticker name  location ebitdamargin grossmargin netmargin   ros   roe
  <chr>  <chr> <chr>           <dbl>       <dbl>     <dbl> <dbl> <dbl>
1 MRK    Merc~ New Jer~        0.305       0.649     0.131 0.15  0.114
2 MRK    Merc~ New Jer~        0.33        0.652     0.13  0.182 0.113
3 MRK    Merc~ New Jer~        0.282       0.615     0.1   0.123 0.089
4 MRK    Merc~ New Jer~        0.567       0.603     0.282 0.409 0.248
5 MRK    Merc~ New Jer~        0.298       0.622     0.112 0.136 0.096
6 MRK    Merc~ New Jer~        0.254       0.648     0.098 0.117 0.092
7 MRK    Merc~ New Jer~        0.278       0.678     0.06  0.162 0.063
8 MRK    Merc~ New Jer~        0.313       0.681     0.147 0.206 0.199
# ... with 9 more variables: year <dbl>, revenue <dbl>, gp <dbl>,
#   rnd <dbl>, netincome <dbl>, assets <dbl>, liabilities <dbl>,
#   marketcap <dbl>, industry <chr>

co_name <- combo_df %>%
  distinct(name)%>%
  pull()

co_location <- combo_df %>%
  distinct(location)%>%
  pull()

co_industry <- combo_df %>%
  distinct(industry)%>%
  pull()

Pu the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company ??? is located in ??? and is a member of the ??? industry group


combo_df_subset <- combo_df %>%
  select(year, grossmargin, netmargin,
         revenue, gp, netincome)

combo_df_subset
# A tibble: 8 x 6
   year grossmargin netmargin     revenue          gp   netincome
  <dbl>       <dbl>     <dbl>       <dbl>       <dbl>       <dbl>
1  2011       0.649     0.131 48047000000 31176000000  6272000000
2  2012       0.652     0.13  47267000000 30821000000  6168000000
3  2013       0.615     0.1   44033000000 27079000000  4404000000
4  2014       0.603     0.282 42237000000 25469000000 11920000000
5  2015       0.622     0.112 39498000000 24564000000  4442000000
6  2016       0.648     0.098 39807000000 25777000000  3920000000
7  2017       0.678     0.06  40122000000 27210000000  2394000000
8  2018       0.681     0.147 42294000000 28785000000  6220000000

combo_df_subset %>%
  mutate(grossmargin_check = gp / revenue,
  close_margin = abs(grossmargin_check - grossmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin revenue      gp netincome
  <dbl>       <dbl>     <dbl>   <dbl>   <dbl>     <dbl>
1  2011       0.649     0.131 4.80e10 3.12e10   6.27e 9
2  2012       0.652     0.13  4.73e10 3.08e10   6.17e 9
3  2013       0.615     0.1   4.40e10 2.71e10   4.40e 9
4  2014       0.603     0.282 4.22e10 2.55e10   1.19e10
5  2015       0.622     0.112 3.95e10 2.46e10   4.44e 9
6  2016       0.648     0.098 3.98e10 2.58e10   3.92e 9
7  2017       0.678     0.06  4.01e10 2.72e10   2.39e 9
8  2018       0.681     0.147 4.23e10 2.88e10   6.22e 9
# ... with 2 more variables: grossmargin_check <dbl>,
#   close_margin <lgl>

combo_df_subset %>%
  mutate(netmargin_check = netincome / revenue,
      close_enough = abs(netmargin_check - netmargin) < 0.001)
# A tibble: 8 x 8
   year grossmargin netmargin revenue      gp netincome
  <dbl>       <dbl>     <dbl>   <dbl>   <dbl>     <dbl>
1  2011       0.649     0.131 4.80e10 3.12e10   6.27e 9
2  2012       0.652     0.13  4.73e10 3.08e10   6.17e 9
3  2013       0.615     0.1   4.40e10 2.71e10   4.40e 9
4  2014       0.603     0.282 4.22e10 2.55e10   1.19e10
5  2015       0.622     0.112 3.95e10 2.46e10   4.44e 9
6  2016       0.648     0.098 3.98e10 2.58e10   3.92e 9
7  2017       0.678     0.06  4.01e10 2.72e10   2.39e 9
8  2018       0.681     0.147 4.23e10 2.88e10   6.22e 9
# ... with 2 more variables: netmargin_check <dbl>,
#   close_enough <lgl>

Question: summarize_industry

health_cos %>%
  group_by(industry) %>%
  summarize(mean_netmargin_percent = mean(netincome / revenue)*100,
            median_netmargin_percent = median(netincome / revenue)*100,
            min_netmargin_percent = min(netincome / revenue)*100,
            max_netmargin_percent = max(netincome / revenue)*100)
# A tibble: 9 x 5
  industry mean_netmargin_~ median_netmargi~ min_netmargin_p~
* <chr>               <dbl>            <dbl>            <dbl>
1 Biotech~            -4.66             7.62         -197.   
2 Diagnos~            13.1             12.3             0.399
3 Drug Ma~            19.4             19.5           -34.9  
4 Drug Ma~             5.88             9.01          -76.0  
5 Healthc~             3.28             3.37           -0.305
6 Medical~             6.10             6.46            1.40 
7 Medical~            12.4             14.3           -56.1  
8 Medical~             1.70             1.03           -0.102
9 Medical~            12.3             14.0           -47.1  
# ... with 1 more variable: max_netmargin_percent <dbl>

Question: inline_ticker

health_cos_subset <- health_cos %>%
  filter(ticker == "AMGN")
health_cos_subset
# A tibble: 8 x 11
  ticker name  revenue      gp    rnd netincome  assets liabilities
  <chr>  <chr>   <dbl>   <dbl>  <dbl>     <dbl>   <dbl>       <dbl>
1 AMGN   Amge~ 1.56e10 1.29e10 3.17e9    3.68e9 4.89e10 29842000000
2 AMGN   Amge~ 1.73e10 1.41e10 3.38e9    4.34e9 5.43e10 35238000000
3 AMGN   Amge~ 1.87e10 1.53e10 4.08e9    5.08e9 6.61e10 44029000000
4 AMGN   Amge~ 2.01e10 1.56e10 4.30e9    5.16e9 6.90e10 43231000000
5 AMGN   Amge~ 2.17e10 1.74e10 4.07e9    6.94e9 7.14e10 43366000000
6 AMGN   Amge~ 2.30e10 1.88e10 3.84e9    7.72e9 7.76e10 47751000000
7 AMGN   Amge~ 2.28e10 1.88e10 3.56e9    1.98e9 8.00e10 54713000000
8 AMGN   Amge~ 2.37e10 1.96e10 3.74e9    8.39e9 6.64e10 53916000000
# ... with 3 more variables: marketcap <dbl>, year <dbl>,
#   industry <chr>


Run the code below

health_cos_subset %>%
  distinct(name)%>%
  pull(name)
[1] "Amgen Inc"
co_name <- health_cos_subset %>%
  distinct(name)%>%
  pull(name)

You can take output from your code and include it in your text.

co_industry <- health_cos_subset %>%
  distinct(industry) %>%
  pull()

THis is outside the Rchunk. Put the r inline commands used in the blanks below. When you knit the document the results of the commands will be displayed in your text.

The company Amgen Inc is a member of the Drug Manufacturers - General group.

Steps 7-11

  1. Prepare the data for the plots
df <- health_cos %>%
  group_by(industry) %>%
  summarize(med_rnd_rev = median(rnd/revenue))
  1. Use glimpse to glimpse the data for the plots
df %>% glimpse()
Rows: 9
Columns: 2
$ industry    <chr> "Biotechnology", "Diagnostics & Research", "D...
$ med_rnd_rev <dbl> 0.48317287, 0.05620271, 0.17451442, 0.0685187...
  1. Create a static bar chart
ggplot(data = df, mapping = aes(
  x = reorder(industry, med_rnd_rev),
  y = med_rnd_rev
  ))+
  geom_col()+
  scale_y_continuous(labels = scales::percent)+
  coord_flip()+
  labs(
    title = "Median R&D expenditures",
    subtitle = "by industry as a percent of revenue form 2011 to 2018",
    x = NULL, y = NULL)+
  theme_ipsum()

  1. Save the last plot to preview.png and add to the yaml chunk at the top
ggsave(filename = "preview.png",
       path = here::here("_posts", "2021-03-11-joining-data"))
  1. Create an interactive bar char using the package echarts4r
df %>%
  arrange(med_rnd_rev) %>%
  e_charts(
    x = industry
  ) %>%
  e_bar(
    serie = med_rnd_rev,
    name = "medium"
  ) %>%
  e_flip_coords() %>%
  e_tooltip() %>%
  e_title(
    text = "Median industry R&D expenditures",
    subtext = "by industry as a percent of evenue from 2011 to 2018",
    left = "center") %>%
  e_legend(FALSE) %>%
  e_x_axis(
    formatter = e_axis_formatter("percent", digits = 0)
  ) %>%
  e_y_axis(
    show = FALSE
  ) %>%
  e_theme("infogrpahic")